Active Learning for Relevance Feedback in Image Retrieval

نویسندگان

  • Jian Cheng
  • Kongqiao Wang
  • Hanqing Lu
چکیده

AbstrAct Relevance.In.Co-SVM algorithm, color and texture are naturally considered as sufficient and.uncorrelated.views.of.an.image..SVM classifier is learned in color and texture feature subspaces, respectively. Then the two classifiers are used to classify the unlabeled data. These unlabeled samples that disagree in the two classifiers are chose to label. The extensive experiments show that the proposed algorithm is beneficial to image retrieval.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

Statistical Machine Learning for Bridging the Semantic Gap in Image Retrieval

of thesis entitled: Statistical Machine Learning for Bridging the Semantic Gap in Image Retrieval Submitted by HOI, Chu Hong (Steven) With the explosive growth of multimedia data, more and more research attentions have been devoted to visual information retrieval. Image retrieval, particularly content-based image retrieval (CBIR), has been actively studied in multimedia information retrieval co...

متن کامل

Improving Relevance Feedback in Image Retrieval by Incorporating Unlabelled Images

In content-base image retrieval, relevance feedback (RF) schemes based on support vector machine (SVM) have been widely used to narrow the semantic gap between low-level visual features and high-level human perception. However, the performance of image retrieval with SVM active learning is known to be poor when the training data is insufficient. In this paper, the problem is solved by incorpora...

متن کامل

Exploiting Unlabeled Data in Content-Based Image Retrieval

In this paper, the Ssair (Semi-Supervised Active Image Retrieval) approach, which attempts to exploit unlabeled data to improve the performance of content-based image retrieval (Cbir), is proposed. This approach combines the merits of semi-supervised learning and active learning. In detail, in each round of relevance feedback, two simple learners are trained from the labeled data, i.e. images f...

متن کامل

Support Vector Machine Concept-Dependent Active Learning for Image Retrieval

Relevance feedback is a critical component when designing image databases. With these databases it is difficult to specify queries directly and explicitly. Relevance feedback interactively learns a user’s desired output or query concept by asking the user whether certain proposed images are relevant or not. For a learning algorithm to be effective, it must learn a user’s query concept accuratel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009